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Counting Techniques



Learning Objectives

1. Understand the product rule of counting.

2. Understand combinations, and when they are used.

3. Understand permutations, and when they are used.





Counting Problems

▶ We know that, with equally likely outcomes,

P(A) = NA

N .

▶ The challenge is in determining NA, and sometimes in determining N .

▶ You likely already have intuition on some counting problems:

▶ If there are K appetizers, ℓ mains, and M desserts, how many possible
meals?

▶ The most basic rule of counting is the product rule.
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The Product Rule for Counting

▶ Suppose there are k choices, with each having nj (j = 1, . . . , k)
choices. How many total combinations?

▶ Given by

N = n1 × n2 × · · · × nk =
k∏

j=1
nj .

▶ Sometimes this is more useful to see via a tree diagram.
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Source: https://www.youtube.com/watch?v=yxJi5vuO_wU

https://www.youtube.com/watch?v=yxJi5vuO_wU


Permutations
▶ What if we want to know the number of ways that we could

have sorted subsets of 10 students in this class?

▶ This is not a question which can be answered through the product rule.
▶ Instead, we require permutations.

▶ A permutation counts the number of ordered sets of k objects, when
there are a total of n.

▶ Mathematically, a permutation is given by

Pk ,n = n!
(n − k)!.

▶ Thus, if there are 30 students in this class, then we can make
P10,30 = 30!

20! = 109, 027, 350, 432, 000 different lines of 10
students.
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Combinations
▶ What if we do not care about the ordering, and just want to

know how many subsets of 10 students exist.

▶ This is not a question which can be answered through the product rule
or permutations (directly).

▶ Instead, we require combinations.

▶ A combination counts the number of unordered sets of k objects, when
there are a total of n.

▶ Mathematically, a combination is given by

Ck ,n =
n
k

 = n!
(n − k)!k!.

▶ Thus, if there are 30 students in this class, then we can make(30
10

)
= 30!

20!10! = 30, 045, 015 groups of 10 students.
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Relationship between Combinations and Permutations

▶ Consider first selecting a group of 10 students and then
ordering them.

▶ We know that there are
(30

10
)

ways of selecting 10 students.
▶ Once we have 10 students, we can use the product rule for

ordering them.

▶ There are 10 options for the first student, 9 options for the second, . . .
, 1 option for the 10th.

▶ As a result, there are 10 × 9 × 8 × · · · × 2 × 1 = 10! ways of ordering.
▶

(
30
10

)
× 10! = P10,30.

▶ Generally, to order k objects, we can use k!.
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Summary

▶ To determine probabilities we must be able to count the
occurrences of events.

▶ The simplest rule for counting is the product rule.

▶ We can use permutations to count ordered sets.

▶ We can use combinations to count unordered sets.

▶ Combinations and permutations are related to one another,
through set ordering.
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