STAT 2593 Lecture 007 - Counting Techniques

Dylan Spicker

Counting Techniques

1. Understand the product rule of counting.

2. Understand combinations, and when they are used.

3. Understand permutations, and when they are used.

	٦		2		6	4		3	7	5	1	2	9
	╢				1		3	9	6	4		5	
		3	6	4	9	7	5						4
		6	9		2	1	4	5	8	7			6
		1		2		5	7	4	9	6		1	
		4	7	5	8	6	9		3	2		4	7
		2	1		5	8	6		4		2		1
		7			4	9	1		5		6	7	3
		5		8	7	3		6	1	9		8	5
		3	2	4	1		8	9	6	5			4
			6	1	9		5		7	4		6	8
			5	7		4		8	2				9

▶ We know that, with equally likely outcomes,

$$P(A) = \frac{N_A}{N}$$

▶ We know that, with equally likely outcomes,

$$P(A)=rac{N_A}{N}.$$

The challenge is in determining N_A , and sometimes in determining N.

▶ We know that, with equally likely outcomes,

$$P(A)=rac{N_A}{N}.$$

• The challenge is in determining N_A , and sometimes in determining N.

> You likely already have intuition on some counting problems:

▶ We know that, with equally likely outcomes,

$$P(A) = \frac{N_A}{N}.$$

• The challenge is in determining N_A , and sometimes in determining N.

- > You likely already have intuition on some counting problems:
 - ► If there are K appetizers, ℓ mains, and M desserts, how many possible meals?

▶ We know that, with equally likely outcomes,

$$P(A)=rac{N_A}{N}.$$

• The challenge is in determining N_A , and sometimes in determining N.

- > You likely already have intuition on some counting problems:
 - If there are K appetizers, ℓ mains, and M desserts, how many possible meals?
- ► The most basic rule of counting is the **product rule**.

The Product Rule for Counting

Suppose there are k choices, with each having n_j (j = 1,..., k) choices. How many total combinations?

The Product Rule for Counting

Suppose there are k choices, with each having n_j (j = 1,..., k) choices. How many total combinations?

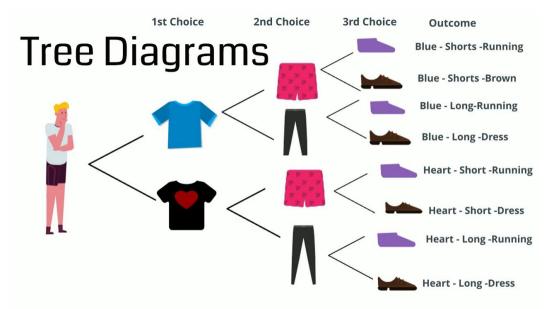
$$N = n_1 \times n_2 \times \cdots \times n_k = \prod_{j=1}^k n_j.$$

The Product Rule for Counting

Suppose there are k choices, with each having n_j (j = 1,..., k) choices. How many total combinations?

$$N = n_1 \times n_2 \times \cdots \times n_k = \prod_{j=1}^k n_j.$$

Sometimes this is more useful to see via a tree diagram.



What if we want to know the number of ways that we could have sorted subsets of 10 students in this class?

- What if we want to know the number of ways that we could have sorted subsets of 10 students in this class?
 - ► This is not a question which can be answered through the product rule.

- What if we want to know the number of ways that we could have sorted subsets of 10 students in this class?
 - ► This is not a question which can be answered through the product rule.
- ► Instead, we require **permutations**.

- What if we want to know the number of ways that we could have sorted subsets of 10 students in this class?
 - ► This is not a question which can be answered through the product rule.
- ► Instead, we require **permutations**.
 - A permutation counts the number of ordered sets of k objects, when there are a total of n.

- What if we want to know the number of ways that we could have sorted subsets of 10 students in this class?
 - ► This is not a question which can be answered through the product rule.
- ▶ Instead, we require **permutations**.
 - A permutation counts the number of ordered sets of k objects, when there are a total of n.
 - Mathematically, a permutation is given by

$$P_{k,n}=\frac{n!}{(n-k)!}.$$

- What if we want to know the number of ways that we could have sorted subsets of 10 students in this class?
 - ► This is not a question which can be answered through the product rule.
- ▶ Instead, we require **permutations**.
 - A permutation counts the number of ordered sets of k objects, when there are a total of n.
 - Mathematically, a permutation is given by

$$P_{k,n}=\frac{n!}{(n-k)!}.$$

▶ Thus, if there are 30 students in this class, then we can make $P_{10,30} = \frac{30!}{20!} = 109,027,350,432,000$ different lines of 10 students.

What if we do not care about the ordering, and just want to know how many subsets of 10 students exist.

- What if we do not care about the ordering, and just want to know how many subsets of 10 students exist.
 - This is not a question which can be answered through the product rule or permutations (directly).

- What if we do not care about the ordering, and just want to know how many subsets of 10 students exist.
 - This is not a question which can be answered through the product rule or permutations (directly).
- ▶ Instead, we require **combinations**.

- What if we do not care about the ordering, and just want to know how many subsets of 10 students exist.
 - This is not a question which can be answered through the product rule or permutations (directly).
- ► Instead, we require **combinations**.
 - A combination counts the number of **unordered** sets of k objects, when there are a total of n.

- What if we do not care about the ordering, and just want to know how many subsets of 10 students exist.
 - This is not a question which can be answered through the product rule or permutations (directly).
- ► Instead, we require **combinations**.
 - A combination counts the number of **unordered** sets of k objects, when there are a total of n.
 - Mathematically, a combination is given by

$$C_{k,n} = \binom{n}{k} = \frac{n!}{(n-k)!k!}$$

- What if we do not care about the ordering, and just want to know how many subsets of 10 students exist.
 - This is not a question which can be answered through the product rule or permutations (directly).
- ► Instead, we require **combinations**.
 - A combination counts the number of **unordered** sets of k objects, when there are a total of n.
 - Mathematically, a combination is given by

$$C_{k,n} = \binom{n}{k} = \frac{n!}{(n-k)!k!}$$

▶ Thus, if there are 30 students in this class, then we can make $\binom{30}{10} = \frac{30!}{20!10!} = 30,045,015$ groups of 10 students.

Consider first selecting a group of 10 students and then ordering them.

- Consider first selecting a group of 10 students and then ordering them.
- We know that there are $\binom{30}{10}$ ways of selecting 10 students.

- Consider first selecting a group of 10 students and then ordering them.
- We know that there are $\binom{30}{10}$ ways of selecting 10 students.
- Once we have 10 students, we can use the product rule for ordering them.

- Consider first selecting a group of 10 students and then ordering them.
- We know that there are $\binom{30}{10}$ ways of selecting 10 students.
- Once we have 10 students, we can use the product rule for ordering them.
 - There are 10 options for the first student, 9 options for the second, ..., 1 option for the 10th.

- Consider first selecting a group of 10 students and then ordering them.
- We know that there are $\binom{30}{10}$ ways of selecting 10 students.
- Once we have 10 students, we can use the product rule for ordering them.
 - There are 10 options for the first student, 9 options for the second, ..., 1 option for the 10th.
 - As a result, there are $10 \times 9 \times 8 \times \cdots \times 2 \times 1 = 10!$ ways of ordering.

- Consider first selecting a group of 10 students and then ordering them.
- We know that there are $\binom{30}{10}$ ways of selecting 10 students.
- Once we have 10 students, we can use the product rule for ordering them.
 - There are 10 options for the first student, 9 options for the second, ..., 1 option for the 10th.
 - ▶ As a result, there are $10 \times 9 \times 8 \times \cdots \times 2 \times 1 = 10!$ ways of ordering.

•
$$\binom{30}{10} \times 10! = P_{10,30}.$$

- Consider first selecting a group of 10 students and then ordering them.
- We know that there are $\binom{30}{10}$ ways of selecting 10 students.
- Once we have 10 students, we can use the product rule for ordering them.
 - There are 10 options for the first student, 9 options for the second, ..., 1 option for the 10th.
 - ▶ As a result, there are $10 \times 9 \times 8 \times \cdots \times 2 \times 1 = 10!$ ways of ordering.

•
$$\binom{30}{10} \times 10! = P_{10,30}.$$

• Generally, to order k objects, we can use k!.

Summary

- To determine probabilities we must be able to count the occurrences of events.
- ► The simplest rule for counting is the product rule.
- We can use **permutations** to count **ordered** sets.
- We can use **combinations** to count **unordered** sets.
- Combinations and permutations are related to one another, through set ordering.